Algorithms for NLP

Word Embeddings

Yulia Tsvetkov – CMU

Slides: Dan Jurafsky – Stanford, Mike Peters – AI2, Edouard Grave – FAIR

Brown Clustering

dog [0000] **cat** [0001] ant [001] **river** [010] lake [011] **blue** [10] **red** [11]

Brown Clustering

Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays June March July April January December October November September August people guys folks fellows CEOs chaps doubters commies unfortunates blokes down backwards ashore sideways southward northward overboard aloft downwards adrift water gas coal liquid acid sand carbon steam shale iron great big vast sudden mere sheer gigantic lifelong scant colossal man woman boy girl lawyer doctor guy farmer teacher citizen American Indian European Japanese German African Catholic Israeli Italian Arab pressure temperature permeability density porosity stress velocity viscosity gravity tension mother wife father son husband brother daughter sister boss uncle machine device controller processor CPU printer spindle subsystem compiler plotter John George James Bob Robert Paul William Jim David Mike anyone someone anybody somebody feet miles pounds degrees inches barrels tons acres meters bytes director chief professor commissioner commander treasurer founder superintendent dean custodian liberal conservative parliamentary royal progressive Tory provisional separatist federalist PQ had hadn't hath would've could've should've must've might've asking telling wondering instructing informing kidding reminding bothering thanking deposing that tha theat

head body hands eves voice arm seat eve hair mouth

[Brown et al, 1992]

Brown Clustering

lawyer	1000001101000
newspaperman	100000110100100
stewardess	100000110100101
toxicologist	10000011010011
slang	1000001101010
babysitter	100000110101100
conspirator	1000001101011010
womanizer	1000001101011011
mailman	10000011010111
salesman	100000110110000
bookkeeper	1000001101100010
troubleshooter	10000011011000110
bouncer	10000011011000111
technician	1000001101100100
janitor	1000001101100101
saleswoman	1000001101100110
Nike	10110111001001010111100
Maytag	1011011100100101010111010
Generali	101101110010010101111011
Gap	10110111001001010111110
Harley-Davidson	101101110010010101111110
Enfield	10110111001001010101111110
genus	10110111001001010101111111
Microsoft	10110111001001011000
Ventritex	101101110010010110010
Tractebel	1011011100100101100110
Synopsys	1011011100100101100111
WordPerfect	1011011100100101101000
John	10111001000000000
Consuelo	10111001000000000
Leffrey	101110010000000010
Kenneth	1011100100000001100
Phillip	10111001000000011010
WILLIAM	10111001000000011011
Timothy	10111001000000001110
Terrence	101110010000000011110
Ierald	10111001000000011111
Harold	101110010000000100
Frederic	101110010000000101
Wendell	10111001000000011

[Miller et al., 2004]

Table 1: Sample bit strings

- \mathcal{V} is a vocabulary
- $C: \mathcal{V} \rightarrow \{1, 2, \dots k\}$ is a partition of the vocabulary into k clusters
- $p(C(w_i)|C(w_{i-1}))$ is a probability of cluster of w_i to follow the cluster of w_{i-1}

•
$$p(w_i|C(w_i)) = \frac{count(w_i)}{\sum_{x \in C(w_i)} count(x)}$$

The model:
Quality(C) =
$$\prod_{i=1}^{n} p(w_i | C(w_i)) p(C(w_i) | C(w_{i-1}))$$

Quality(C)

Define

$$P(c, c') = \frac{n(c, c')}{n} \quad P(w) = \frac{n(w)}{n} \quad P(c) = \frac{n(c)}{n}$$

▶ Then (again from Percy Liang, 2005):

Quality(C) =
$$\sum_{c,c'} P(c,c') \log \frac{P(c,c')}{P(c)P(c')} + \sum_{w} P(w) \log P(w)$$
$$= I(C) - H$$

The first term I(C) is the mutual information between adjacent clusters and the second term H is the entropy of the word distribution. Note that the quality of C can be computed as a sum of mutual information weights between clusters minus the constant H, which does not depend on C. This decomposition allows us to make optimizations.

Slide by Michael Collins

- We start with |V| clusters: each word gets its own cluster
- Our aim is to find *k* final clusters
- We run $|\mathcal{V}| k$ merge steps:
 - At each merge step we pick two clusters *ci* and *cj*, and merge them into a single cluster
 - We greedily pick merges such that Quality(C) for the clustering C after the merge step is maximized at each stage
- Cost? Naive = O(|𝒴|⁵). Improved algorithm gives O(|𝒴|³): still too slow for realistic values of |𝒴|

Slide by Michael Collins

- Parameter of the approach is m (e.g., m = 1000)
- Take the top *m* most frequent words, put each into its own cluster, c₁, c₂, ... c_m
- For *i* = (*m* + 1) ... | *V*|
 - Create a new cluster, c_{m+1}, for the *i*'th most frequent word.
 We now have *m* + 1 clusters
 - Choose two clusters from c₁...c_{m+1} to be merged: pick the merge that gives a maximum value for Quality(C). We're now back to *m* clusters
- Carry out (m 1) final merges, to create a full hierarchy
- Running time: $O(|\mathcal{V}|m^2 + n)$ where *n* is corpus length

Plan for Today

- Word2Vec
 - Representation is created by training a classifier to distinguish nearby and far-away words
- FastText
 - Extension of word2vec to include subword information
- ELMo
 - Contextual token embeddings
- Multilingual embeddings
- Using embeddings to study history and culture

Word2Vec

- Popular embedding method
- Very fast to train
- Code available on the web
- Idea: predict rather than count

Word2Vec

[Mikolov et al.' 13]

Skip-gram

the cat sat on the mat

context size = 2

context size = 2

context size = 2

 $w_t = \text{the} \longrightarrow \text{CLASSIFIER} \longrightarrow \begin{array}{c} w_{t-1} = \text{on} \\ w_{t+1} = \text{mat} \\ w_{t+2} = <\text{end}_{+1} > \end{array}$

context size = 2

context size = 2

Training data

• For each word in the corpus *t*= 1 ... *T*

$$J(\boldsymbol{\varTheta}) = \prod_{t=1}^{T} \prod_{-m \leq j \leq m, j \neq 0} p(w_{t+j} | w_t; \boldsymbol{\varTheta})$$

$$J(\Theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log p(w_{t+j} | w_t; \Theta)$$

Maximize the probability of any context window given the current center word

Softmax

 $softmax(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}$

SGNS

- Negative Sampling
 - Treat the target word and a neighboring context word as positive examples.
 - subsample very frequent words
 - Randomly sample other words in the lexicon to get negative samples
 - x2 negative samples

Given a tuple (t,c) = target, context

- (cat, sat)
- (cat, aardvark)

Learning the classifier

Iterative process

- We'll start with 0 or random weights
- Then adjust the word weights to
 - make the positive pairs more likely
 - and the negative pairs less likely
- over the entire training set:

$$\sum_{(t,c)\in +} log P(+|t,c) + \sum_{(t,c)\in -} log P(-|t,c)$$

• Train using gradient descent

How to compute p(+|t,c)?

Given a tuple (t,c) = target, context

- (cat, sat)
- (cat, aardvark)

Return probability that c is a real context word:

$$P(+|t,c) = \frac{1}{1+e^{-t\cdot c}}$$

$$P(-|t,c) = 1 - P(+|t,c)$$
$$= \frac{e^{-t \cdot c}}{1 + e^{-t \cdot c}}$$

Could pick w according to their unigram frequency P(w)

More common to chosen then according to $p_{\alpha}(w)$

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w} count(w)^{\alpha}}$$

 $\alpha = \frac{3}{4}$ works well because it gives rare noise words slightly higher probability To show this, imagine two events p(a)=.99 and p(b) = .01:

$$P_{\alpha}(a) = \frac{.99^{.75}}{.99^{.75} + .01^{.75}} = .97$$
$$P_{\alpha}(b) = \frac{.01^{.75}}{.99^{.75} + .01^{.75}} = .03$$

Enriching Word Vectors with Subword Information

Piotr Bojanowski^{*} and Edouard Grave^{*} and Armand Joulin and Tomas Mikolov Facebook AI Research {bojanowski,egrave,ajoulin,tmikolov}@fb.com

https://fasttext.cc/

FastText: Motivation

Much'ananayakapushasqakupuniñataqsunamá

Much'a -na -naya -ka -pu -sha -sqa -ku -puni -ña -taq -suna -má

"So they really always have been kissing each other then"

Much'a to kiss expresses obligation, lost in translation -na -naya expresses desire -ka diminutive -pu reflexive (kiss *eachother*) -sha progressive (kiss*ing*) declaring something the speaker has not personally witnessed -sqa -ku 3rd person plural (they kiss) -puni definitive (really*) -ña always statement of contrast (...then) -tag -suna expressing uncertainty (So...) -má expressing that the speaker is surprised

	Singular+neut	Plural+neut	
Nominative	предложение	предложения	sentence (s)
Genitive	предложения	предложений	(of) sentence (s)
Dative	предложению	предложениям	(to) sentence (s)
Accusative	предложение	предложения	sentence (s)
Instrumental	предложением	предложениями	(by) sentence (s)
Prepositional	предложении	предложениях	(in/at) sentence (s)

skiing = { ^ skiing\$, ^ ski, skii, kiin, iing, ing\$ }

FastText

Details

- *n*-grams between 3 and 6 characters
- how many possible ngrams?
 - |character set|ⁿ
 - Hashing to map n-grams to integers in 1 to K=2M
- get word vectors for out-of-vocabulary words using subwords.
- less than 2× slower than word2vec skipgram
- short n-grams (n = 4) are good to capture syntactic information
- longer n-grams (n = 6) are good to capture semantic information

FastText Evaluation

Intrinsic evaluation

French, Romanian, Russian

• All models trained on Wikipedia:

		sg	cbow	ours*	ours
AR	WS353	51	52	54	55
De	Gur350 Gur65 ZG222	61 78 35	62 78 38	64 81 41	70 81 44
En	RW WS353	43 72	43 73	46 71	47 71
Es	WS353	57	58	58	59
FR	m RG65	70	69	75	75
Ro	WS353	48	52	51	54
Ru	HJ	59	60	60	66

Table: Correlation between human judgement and similarity scores. OoV words are represented as null vectors (ours*) or sum of *n*-grams (ours).

[Grave et al, 2017]

	DE		En		Es	$\mathbf{F}\mathbf{R}$
-	Gur350	ZG222	WS	RW	WS	RG
Luong et al. (2013)	2	-	64	34	2	-
Qiu et al. (2014)	-	-	65	33	_	-
Soricut and Och (2015)	64	22	71	42	47	67
Ours	73	43	73	48	54	69
Botha and Blunsom (2014) Ours	56 66	25 34	39 54	30 41	28 49	45 52

Table: Spearman's rank correlation coefficient between human judgement and model scores for different methods using morphology to learn word representations.

FastText Evaluation

	autofahrer freundeskreis	fahr kreis	fahrer kreis>	auto ≤freun
DE	grundwort	wort	wort>	grund
	sprachschule	schul	hschul	sprach
	tageslicht	licht	gesl	tages
	anarchy	chy	<anar< td=""><td>narchy</td></anar<>	narchy
	monarchy	monarc	chy	<monar< td=""></monar<>
	kindness	ness>	ness	kind
	politeness	polite	ness>	eness>
EN	unlucky	<un< td=""><td>cky></td><td>nlucky</td></un<>	cky>	nlucky
	lifetime	life	<life< td=""><td>time</td></life<>	time
	starfish	fish	fish>	star
	submarine	marine	sub	marin
	transform	trans	<trans< td=""><td>form</td></trans<>	form
FR	finirais	ais>	nir	fini
	finissent	ent>	finiss	<finis< td=""></finis<>
	finissions	ions>	finiss	sions>

Table 6: Illustration of most important character ngrams for selected words in three languages. For each word, we show the n-grams that, when removed, result in the most different representation.

Deep contextualized word representations

Matthew E. Peters[†], Mark Neumann[†], Mohit Iyyer[†], Matt Gardner[†], {matthewp, markn, mohiti, mattg}@allenai.org

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer^{†*} {csquared, kentonl, lsz}@cs.washington.edu

[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

p(play | Elmo and Cookie Monster play a game .) ≠ p(play | The Broadway play premiered yesterday .)

ALLEN INSTITUTE

Evaluation: Extrinsic Tasks

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals **within a cloud**. Short, intense periods of rain in scattered locations are called "showers".

What causes precipitation to fall? gravity

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation? within a cloud

Figure 1: Question-answer pairs for a sample passage in the SQuAD dataset. Each of the answers is a segment of text from the passage.

[Rajpurkar et al, '16, '18]

SNLI

A man inspects the uniform of a figure in some East Asian country.	contradiction	The man is sleeping
An older and younger man smiling.	neutral N N E N N	Two men are smiling and laughing at the cats play- ing on the floor.
A black race car starts up in front of a crowd of people.	contradiction CCCCC	A man is driving down a lonely road.
A soccer game with multiple males playing.	entailment E E E E E	Some men are playing a sport.
A smiling costumed woman is holding an umbrella.	neutral N N E C N	A happy woman in a fairy costume holds an umbrella.

Table 1: Randomly chosen examples from the development section of our new corpus, shown with both the selected gold labels and the full set of labels (abbreviated) from the individual annotators, including (in the first position) the label used by the initial author of the pair.

[Bowman et al, '15]

Multilingual Embeddings

Improving Vector Space Word Representations Using Multilingual Correlation

> Manaal Faruqui and Chris Dyer Carnegie Mellon University Pittsburgh, PA, 15213, USA

{mfaruqui, cdyer}@cs.cmu.

Massively Multilingual Word Embeddings

Waleed Ammar[◊] George Mulcaire[♡] Yulia Tsvetkov[◊] Guillaume Lample[◊] Chris Dyer[◊] Noah A. Smith[♡] [◊]School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA [♡]Computer Science & Engineering, University of Washington, Seattle, WA, USA wammar@cs.cmu.edu, gmulc@uw.edu, ytsvetko@cs.cmu.edu {glample,cdyer}@cs.cmu.edu, nasmith@cs.washington.edu

https://github.com/mfaruqui/crosslingual-cca http://128.2.220.95/multilingual/

Motivation

Motivation

Canonical Correlation Analysis (Hotelling, 1936)

Projects two sets of vectors (of equal cardinality) in a space where they are maximally correlated.

X' and Y' are now maximally correlated.

[Faruqui & Dyer, '14]

Extension: Multilingual Embeddings

[Ammar et al., '16]

Embeddings can help study word history!

Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change

William L. Hamilton, Jure Leskovec, Dan Jurafsky Department of Computer Science, Stanford University, Stanford CA, 94305 wleif, jure, jurafsky@stanford.edu

- count-based embeddings w/ PPMI
- projected to a common space

Project 300 dimensions down into 2

~30 million books, 1850-1990, Google Books data

Negative words change faster than positive words

Word embeddings quantify 100 years of gender and ethnic stereotypes

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou PNAS April 17, 2018 115 (16) E3635-E3644; published ahead of print April 3, 2018

Change in association of Chinese names with adjectives framed as "othering" (barbaric, monstrous, bizarre)

Conclusion

- Concepts or word senses
 - Have a complex many-to-many association with words (homonymy, multiple senses)
 - Have relations with each other
 - Synonymy, Antonymy, Superordinate
 - But are hard to define formally (necessary & sufficient conditions)
- Embeddings = vector models of meaning
 - More fine-grained than just a string or index
 - Especially good at modeling similarity/analogy
 - Just download them and use cosines!!
 - Useful in many NLP tasks
 - But know they encode cultural stereotypes